Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Da-Qi Wang

Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's
Republic of China

Correspondence e-mail:
wangdqchem@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.091$
Data-to-parameter ratio $=10.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[diaqua-di- μ-malonato-cobalt(II)disodium(I)]

In the title compound, $\left[\mathrm{CoNa}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, a heterobimetallic malonate complex, both $\mathrm{Co}^{\mathrm{II}}$ and Na^{I} ions have distorted octahedral coordination geometries. The $\mathrm{Co}^{\mathrm{II}}$ ions are located on inversion centres and are surrounded only by carboxylate O atoms, while the Na^{I} ions are coordinated both by water and by carboxylate O atoms. The malonate dianions show an unusual heptadentate bridging mode.

Comment

The malonate ion is known to be a versatile ligand since it can act as a monodentate or a multidentate ligand either in chelating or in bridging modes. Malonic acid has a wide use in many fields as a result of its excellent coordination ability. The complexes of malonic acid with lanthanide and transition metals have been used as fluorescent probes (Tsryuk et al., 1977), solid fluorescent materials (Sun et al. 1988) and magnetic materials (Ruiz-Perez, Sanchiz et al., 2000; RuizPerez, Hernandez-Molina et al., 2000).

(I)

The title compound, (I) (Fig. 1), is isostructural with the previously reported diaquadisodiumdimalonatocopper(II) (Ghoshal et al., 2005; Liu et al., 2004; Deng et al., 2002; Barnes \& Weakley, 1997) and diaquadisodiumdimalonatozinc(II) (Lin et al., 2003) complexes. The structure consists of an extended $\mathrm{Co}^{\text {II }}$ malonate network forming layers in the $a b$ plane (Fig. 2). These layers are interlocked with the Na-water-malonate network, where the water molecules link the Na^{I} ions to form $\mathrm{Na}-\mathrm{O} 5$ (water) - Na- zigzag chains. The $\mathrm{Co}^{\mathrm{II}}$ and Na^{I} ions all have distorted octahedral coordination geometries (Table 1). The $\mathrm{Co}^{\text {II }}$ ions are located on inversion centres and are surrounded only by carboxylate O atoms, while the Na^{I} ions are coordinated both by water and by carboxylate O atoms. Each malonate dianion acts as a heptadentate ligand bridging two $\mathrm{Co}^{\text {II }}$ and four Na^{I} ions. The $\mathrm{Co} \cdots \mathrm{Na}$ shorter distance is

Figure 1
The asymmetric unit and selected symmetry-generated atoms, showing the coordination environments of the $\mathrm{Co}^{\mathrm{II}}$ and Na^{I} ions.
3.5498 (16) \AA and the $\mathrm{Na} \cdots \mathrm{Na}^{\text {ii }}$ distance is $3.7465(19) \AA$ [symmetry code (ii): $\frac{1}{2}+x, y, \frac{1}{2}-z$]. The $\mathrm{Na} \cdots \mathrm{Na}^{\mathrm{i}}$ distance is shorter than those observed in the zinc and copper analogues [3.7751 (11) and 3.7860 (9) \AA, respectively]. The coordinated water molecules donate their H atoms to neighbouring carboxylate groups, further strengthening the crystal cohesion (Table 2). In diaquadisodiumdimalonatocopper(II), a weak ferromagnetic interaction between the metal ions, mediated through the non-magnetic malonate ligands, was observed (Ghoshal et al., 2005).

Experimental

All reagents and solvents were used as obtained without further purification. Malonic acid (21 mg) and sodium hydroxide (16 mg) were mixed in water (5 ml) and cobalt(II) chloride hexahydrate (24 mg) was added to afford a pink solution. After several days pink needles were obtained in 60% yield. Analysis calculated for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{CoNa}_{2} \mathrm{O}_{10}$: C 20.89 , H 2.34%; found: C 20.57 , H 2.58%.

Crystal data

$\left[\mathrm{CoNa}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=345.03$
Orthorhombic, Pbca
$a=6.7815$ (16) £
$b=9.348(2) \AA$
$c=16.509$ (4) A
$V=1046.6(4) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.741, T_{\text {max }}=0.829$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.091$
$S=1.00$
921 reflections
88 parameters
H-atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.190 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.77 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Needles, pink } \\
& 0.18 \times 0.15 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

4916 measured reflections 921 independent reflections 682 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0605 P)^{2}\right. \\
&+0.1861 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
The three-dimensional network of the title compound. H atoms have been omitted for clarity.

Table 1
Selected bond lengths (\AA).

$\mathrm{Co} 1-\mathrm{O} 1$	$2.035(2)$	$\mathrm{Na} 1-\mathrm{O} 5^{\mathrm{ii}}$	$2.406(3)$
$\mathrm{Co} 1-\mathrm{O} 3$	$2.101(2)$	$\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.418(3)$
$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.205(2)$	$\mathrm{Na} 1-\mathrm{O} 2^{\text {ii }}$	$2.509(3)$
$\mathrm{Na} 1-\mathrm{O} 5$	$2.359(3)$	$\mathrm{Na} 1-\mathrm{O} 3^{\mathrm{iv}}$	$2.553(2)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2}, y,-z+\frac{1}{2}$; (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x,-y+2,-z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O5-H2 } 2 \cdots \mathrm{O}^{\mathrm{v}}}^{\text {vi }}$	0.85	1.95	$2.777(3)$	163
${\text { O5-H1 } \cdots \mathrm{O}^{\text {v }}}^{2}$	0.85	1.86	$2.706(3)$	174

Symmetry codes: (v) $x-\frac{1}{2},-y+\frac{3}{2},-z$; (vi) $x-\frac{1}{2}, y,-z+\frac{1}{2}$.
Water H atoms were located in difference Fourier maps and refined as riding with an $\mathrm{O}-\mathrm{H}$ distance of $0.85 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. The remaining H atoms were placed in calculated positions and refined as riding with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Barnes, J. C. \& Weakley, T. J. R. (1997). Acta Cryst. C53, IUC9700026.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Deng, S., Long, L., Zheng, L. \& Nget, S. (2002). Main Group Met. Chem. 25, 465-466.
Ghoshal, D., Maji, T. K., Mallah, T., Lu, T., Mostafa, G. \& Chaudhuri, N. R. (2005). Inorg. Chim. Acta, 358, 1027-1033.

Lin, D.-D., Zhang, L. \& Xu, D.-J. (2003). Acta Cryst. E59, m1010-m1012.
Liu, H., Mao, H., Zhang, H., Xu, C., Wu, Q., Li, G., Zhu, Y. \& Hou, H. (2004). Polyhedron, 23, 943-948.
Ruiz-Perez, C., Hernandez-Molina, M., Lorenzo-Luis, P., Lloret, F., Cano, J. \& Julve, M. (2000). Inorg. Chem. 39, 3845-3852.

metal-organic papers

Ruiz-Perez, C., Sanchiz, J., Hernandez-Molina, M., Lloret, F. \& Julve, M. (2000). Inorg. Chem. 39, 1363-1370.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97, University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sun, J., Chen, C. \& Qin, Z. (1988). J. Lumin. 40, 246-247.
Tsryuk, B. I., Koreneva, L. G. \& Zolen, V. F. (1977). Koord. Khim. 3, 465-469. (In Russian.)

[^0]: (C) 2006 International Union of Crystallography All rights reserved

